
LLNL-CONF-586816

MPI Runtime Error Detection with
MUST: Advanced Error Reports

J. Protze, T. Hilbrich, B. de Supinski, M. Schulz,
M. Mueller, W. Nagel

October 1, 2012

6th Parallel Tools Workshop
Stuttgart, Germany
September 25, 2012 through September 26, 2012

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Chapter 1
MPI Runtime Error Detection with MUST:
Advanced Error Reports

Joachim Protze, Tobias Hilbrich, Bronis R. de Supinski, Martin Schulz, Matthias S.
Müller, and Wolfgang E. Nagel

Abstract The Message Passing Interface (MPI) is a widely used paradigm for dis-
tributed memory programming. Its API is primarily designed for good performance
and less for usability; it provides only very limited abstractions that help enforce
its correct use. As a result, application developers need tools that aid in the detec-
tion and removal of MPI usage errors. Our runtime error detection tool MUST ad-
dresses this issue and provides a wide range of automatic correctness checks. MUST
uses state-of-the-art approaches to cope with complex MPI semantics like derived
datatypes, collective operations, and wildcard receive operations. However, equally
important to detecting correctness violations, is that such correctness tools present
all details of the violating MPI call(s) required to pinpoint the problem in the source
code and to remove the error. In this paper we focus on the error reports presented
by MUST and propose a new set of error reports that present complex errors with
fine-grained details of the error situation. This includes a deadlock view and a view
for usage errors in complex MPI datatypes.

1.1 Introduction

The development of Message Passing Interface (MPI) [1] applications is a time
consuming and complex task. One of the key challenges, aside from achieving high
efficiency, is guaranteeing soundness of an application’s use of MPI, i.e., its correct
usage of the MPI API. While some MPI related errors may directly cause wrong re-

Joachim Protze · Tobias Hilbrich · Matthias S. Müller · Wolfgang E. Nagel
Center for Information Services and High Performance Computing (ZIH), Technische Universität
Dresden, D-01062 Dresden, Germany
e-mail: {joachim.protze, tobias.hilbrich, matthias.mueller, wolfgang.nagel}@tu-dresden.de

Bronis R. de Supinski · Martin Schulz
Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
e-mail: {bronis, schulzm}@llnl.gov

1

2 J. Protze et al.

sults, application crashes, or hangs, some errors may only manifest on some systems
or runs and then in some cases only long after their cause or simply by producing
wrong results at the end of the execution. If done manually, finding such problems
can be a long and difficult task and developers therefore require tool support that
aids in the removal of these errors. Runtime error detection, i.e., detecting errors
during an application run, is one tool class that provides this support. We develop
the Marmot Umpire Scalable Tool (MUST), named after its predecessor tools Mar-
mot [2] and Umpire [3], for this purpose.

Process 0 Process 1
MPI Recv(from:1, tag:100) MPI Recv(from:0, tag:200)
MPI Isend(to:1, tag:200, &req) MPI Isend(to:0, tag:100, &req)
MPI Wait(&req) MPI Wait(&req)

(a) Recv-recv deadlock.

Process 0 Process 1
MPI Isend(to:1, tag:200, &req) MPI Isend(to:0, tag:100, &req)
MPI Recv(from:1, tag:200) MPI Recv(from:0, tag:100)
MPI Wait(&req) MPI Wait(&req)

(b) Deadlock resulting from a tag mismatch.

Fig. 1.1 MPI usage error examples.

Recent advances in runtime deadlock detection [4] and datatype correctness
checks [5] allow MUST to efficiently detect complex errors. However, detecting
such errors is only half the solution to the overall problem. Any tool must also
present all details about a detected error in a way that helps users understand the
erroneous behavior of their codes and help them fix the problem. Consider the fol-
lowing examples that illustrate some potential complexities:

Figure 1.1 presents two deadlock scenarios with simplified MPI calls. Two pro-
cesses attempt to send and receive a message from each other using blocking receive
and non-blocking send calls. The example in Figure 1(a) results in a deadlock, as
both processes issue the MPI Recv call without issuing any send calls first. As a
result, both processes wait in a cyclic fashion for each other’s send call, which is
never reached, and hence can’t continue execution. MUST’s graph-based deadlock
detection catches this error and presents the user with a wait-for graph. As no pro-
cess issued a send call before the receive call, this report includes the key items
to understand the error, which in this case are the processes involved in the dead-
lock and their individual active MPI calls. The situation in Figure 1(b) represents a
similar communication, which also results in a deadlock, due to a mismatch in the
given message tags. MUST’s wait-for graph shows the user that both processes are
blocked in the MPI Recv call. As both processes have active send calls, the simple
criteria used in the example above doesn’t hold and the tool user needs to investigate
these calls manually in order to determine whether a tag or even a communicator
mismatch exists. Different source files that contain active send calls or the use of
variables as tag arguments can complicate this further.

1 MPI Runtime Error Detection with MUST: Advanced Error Reports 3

In this paper, we present a set of novel output extensions of MUST that provide
tool users with the necessary fine-grained and detailed information of such complex
error situations, but without overwhelming them with additional unrelated data. In
particular, we include:

• A parallel call stack that highlights the processes that MUST determined as the
root of a deadlock,

• A condensed message queue that only lists send and receive calls that are mean-
ingful in a deadlock situation, and

• A call-stack based decomposition of the message queue graph to augment a reg-
ular message queue graph with source location information, and

• A datatype tree view that highlights error positions in derived datatypes.

We first present an overview of MUST, its correctness checks, and its basic error
report in Section 1.2, followed by a summary of MUST’s current deadlock view and
datatype usage reports. Afterwards, we present our proposed deadlock view exten-
sions in Section 1.4. Section 1.5 presents how we can efficiently pinpoint particular
error positions in derived datatypes. Finally, we present related work in Section 1.6
and conclude in Section 1.7.

1.2 MUST

MUST detects MPI usage errors, i.e., usage of MPI calls that are not consistent
with restrictions laid out in the MPI standard, during an application run and re-
ports them to the user. Examples for such usage errors are illegal parameters to MPI
calls, writes to a send buffer while an asynchronous message transfer is in progress,
inconsistent orderings of collective operations, or deadlocks due to improper syn-
chronization. MUST uses the MPI profiling interface to intercept and analyze all
MPI calls that an application issues. The tool can be loaded into the application us-
ing the LD PRELOAD mechanism. In this case, the usage of the tool becomes as
easy as replacing the respective mpiexec command with a wrapper command called
mustrun.

We distinguish two types of correctness checks: local correctness checks and
non-local checks. Local checks only require information that is available on a sin-
gle MPI process and hence don’t require any communication for their execution.
As a result, MUST is able to execute local checks inside each application process,
or more precisely inside the MUST MPI wrappers used to intercept all MPI calls.
Using local checks, we can, e.g., detect whether a datatype that is used in a commu-
nication call is committed or whether parameters to MPI calls are out of range. Non-
local correctness checks require information from more than one process. Datatype
signature matching between sending and receiving communication calls is one such
example. The implementation of non-local correctness checks requires additional
communication and hence a separate communication mechanism that can forward
information about MPI calls to other processes or extra resources. MUST uses the

4 J. Protze et al.

Fig. 1.2 Example MUST error report.

Generic Tool Infrastructure (GTI) [6] for this purpose. Currently MUST provides
the following classes of correctness checks covering a wide spectrum of possible
error cases:

• Local:

– Integer checks (e.g., restrictions on tags, counts, sizes, and offsets)
– Integrity checks (e.g., Arrays allocated or communication buffer present)
– MPI resource surveillance (e.g., use of requests, datatypes, reduce operations,

groups, and communicators)
– Resource leak checks
– Communication buffer overlap checks

• Non-local:

– Collective verification (e.g., matching roots and compatible reduce opera-
tions)

– Lost message detection
– Message type matching (for both point-to-point and collective operations)
– Deadlock detection

Previous work [4] includes extensive performance results and has shown the fea-
sibility of this approach, including its scalability using an application study on up to
512 processes.

In its initial form, the basic output of MUST is an HTML table that follows the
format of Marmot [7]. In Marmot checks had to be implemented for each MPI call,
even for the same error conditions, leading to significant code duplication of any
error reporting. MUST avoids this redundancy with the use of so-called argument
IDs. Figure 1.2 shows a basic MUST report with an integer usage error. The check
that detects the negative count argument in the MPI Send call is mapped to many
different calls and argument types. MUST uses the argument IDs to identify the
argument number and name, which increases the detail in its output reports. Fur-
ther, MUST uses the Stackwalker API of the Dyninst project1 to retrieve call stack
information for each MPI call it intercepts.

1 http://www.dyninst.org/

1 MPI Runtime Error Detection with MUST: Advanced Error Reports 5

1.3 Shortcoming of Current Error Views

While the initial MUST implementation provided useful information about violated
checks, the output format was not optimal and omitted several key pieces of in-
formation a user requires to identify the broken code location and to fix it. These
shortcomings were introduced because the initial output format was driven by the
implementation of the tool and what it naturally collects, without taking the user’s
needs into account. This is, unfortunately, common for many tools, which flood the
user with raw data, but fail to provide some essential details. We illustrate two such
problems in the following, using the examples of deadlock detection and problems
with complex datatypes. We will first show (in this section) why the existing views
are insufficient and (following in the next two sections) how we were able to work
around it.

1.3.1 Example: Pinpointing deadlocks

A key feature of MUST is its graph-based deadlock detection [8]. It creates a wait-
for graph and then uses this graph to identify existing deadlock conditions. If such
a condition is found, the tool provides the user with a list of processes that are
in a deadlocked state as well as their wait-for dependencies that cause them to be
deadlocked. This enables MUST to separate processes that cause the deadlock from
processes that hang due to waiting for deadlocked processes directly or indirectly.

The graph based approach also has the additional advantage that we can use the
graph itself to visualize the deadlock conditions and the wait-for dependencies to
the user. As a result, MUST’s previous deadlock view provides:

• A textual description of the deadlock situation,
• A wait-for graph of the deadlocked processes, and
• A source location list of the deadlock processes.

In the following we use the erroneous sequence of MPI calls in Figure 1(b) as an
example to illustrate MUST’s previous output. Figure 3(a) shows the wait-for graph
(WFG) that MUST provides for this example. However, this graph along with the
source location lists of the deadlocked processes alone is not sufficient to identify
the root cause for this error. From our experience, a tool must provide answers to
the following questions:

1. Which processes cause the deadlock?
2. What MPI calls are active on these processes?
3. Which control flow led to these active calls?
4. In the case of involved point-to-point operations, which other active communi-

cations exist?

6 J. Protze et al.

MPI_Recv@0

MPI_Recv@1

 tag=200, comm=A tag=100, comm=A

(a) Wait-for graph.

0

1

send:comm=A,tag=200} send:comm=A,tag=100

(b) Message queue graph.

__libc_start_main@libc-2.13.so

main@tagmismatch.c:46

 [0]

main@tagmismatch.c:53

 [1]

MPI_Recv

 [0]

MPI_Recv

 [1]

(c) Parallel call stack graph.

MPI_Isend MPI_Isend

__libc_start_main@libc-2.13.so

main@tagmismatch.c:45

 [0]

main@tagmismatch.c:52

 [1]

0

 [0]

1

 [1]

1

 comm=A,tag=200

0

 comm=A,tag=100

(d) Call stack graph decomposition of the message queue graph.

Fig. 1.3 Deadlock view components for the example in Figure 1(b).

1 MPI Runtime Error Detection with MUST: Advanced Error Reports 7

While MUST’s previous output provides answers to the first two questions it
does not provide information on the latter two. Also, the list of source locations is
insufficient for deadlock reports that involve more than a few processes.

1.3.2 Example 2: Viewing datatype related problems

The MPI standard imposes constraints for communication operations. Erroneous
usage of MPI datatypes may collide with three of such constraints. In the following
we sketch these three referring to version 2.2 of the MPI standard [1]:

• For sending operations, the application may not modify the communication
buffer, until the send completes.

• For receiving operations, the application must not access any part of the commu-
nication buffer, until the receive completes.

• The type signature of a communication must adhere to matching rules during the
following three steps:

1. MPI types must match programming language types for reads from the appli-
cation memory (except for the MPI type MPI BYTE),

2. MPI types must match on receiver and sender sides during transport to re-
ceiver, and

3. MPI types must match programming language types for writes to the applica-
tion memory (except for the MPI type MPI BYTE).

In MUST we provide checks for overlapping communication buffers handling a
sub-set of clashes with the first two constraints, and for type matching in commu-
nication which meets step two of the latter constraint. These checks handle any
(derived) datatypes that communication calls may use. We provide no checks for
memory manipulation done in application context. Instead, we focus on simultane-
ous MPI communications that break any of these constraints. If MUST detects such
an error, it is crucial that it provides precise information on its source. While the
simplest solution would be to provide memory addresses, this provides unsatisfac-
tory details on where the error resides in a communication buffer and its associated
MPI datatype. We currently use a path expression approach [5] to pin-point these
error locations. An example for this path expression can be found in Section 1.5.
While these expressions provide an exact position of the error location within a
datatype signature, they require a deep understanding of their format, while losing
information about the overall structure of the involved datatype(s).

8 J. Protze et al.

1.4 Deadlock View in MUST

As the last section illustrated, MUST’s previous deadlock view lacked detail, espe-
cially for message mismatch situations, and scalability. To overcome this limitation,
we propose a new, dedicated deadlock view that contains the following elements:

• A textual summary,
• A communicator overview,
• The WFG with a legend,
• A parallel call stack,
• A graph representation of the current message queue, and
• A decomposition of the message queue that uses a parallel call stack.

Our new output generator in MUST combines all of these elements in a single
HTML page (for better readability, however, we present the individual elements in
separate sub-figures). While the textual summary matches our previous outputs, we
use the communicator overview to represent each communicator with an upper case
letter. In the erroneous sequence of MPI calls in Figure 1(b), which we use as an ex-
ample throughout this section, the application only uses MPI COMM WORLD, which
we represent as comm A. If additional communicators are defined by the application,
the communicator summary includes information on the MPI calls that created the
communicator. The WFG (Figure 3(a)) matches our previous outputs, except that
we now use the communicator symbols to also present information on the commu-
nicators in use. We also add a legend to this graph as it may contain intermediate
nodes to represent complex MPI semantics. Additionally, the new view shows the
parallel call stack to provide insights for Question 3 (introduced in Section 1.3) and
the last two graphs to provide information for Question 4, which we describe in the
following.

Figure 3(c) shows MUST’s parallel call stack for our example. It helps to illus-
trate control flow decisions that lead to the deadlock condition. While it is challeng-
ing to represent information on the control flow of the individual processes in all de-
tails, this limited view provided by call stacks is in most cases sufficient. Additional
static source analysis may reveal control flow relevant variables to enrich parallel
call stack graphs with further information, as an extension [9] of the STAT [10] tool
shows. Further, these graphs scale well with the number of application processes.
For our purposes, we limit this call stack graph to only the application processes
that are part of the deadlock in order to remove any unnecessary information and
provided the most concise representation.

Question 4 addresses situations where point-to-point operations are involved in
a deadlock. In this case the root-cause of the error may be a tag or communicator
mismatch. In order to understand this situation, the application developer requires
information about any active and meaningful point-to-point call, whether it is in-
volved in the actual deadlock condition or not. MUST provides a message queue
graph for this purpose. Since MUST detects which processes are part of the dead-
lock, while it also determines which processes are blocked in point-to-point calls,

1 MPI Runtime Error Detection with MUST: Advanced Error Reports 9

we can automatically reduce the full message queue graph to only present messages
that:

• were started by a process that is part of the deadlock;
• have active send operations, which target a process that hangs in a receive oper-

ation or a completion that includes a non-blocking receive operation; or
• have active receive operations, which target a process that hangs in a send oper-

ation or a completion that includes a non-blocking send operation.

Using these conditions, we can condense our output to only present relevant point-
to-point operations. Figure 3(b) shows this graph for our example. The graph in-
cludes an arc from node 0 (which represents process 0) to node 1 to represent the
MPI Isend call that was issued on process 0 before the deadlock manifested. The
other arc represents the MPI Isend operation that was started by process 1.

MUST’s condensed message queue graph allows application developers to deter-
mine whether a potential mismatch exists. In our example, Figure 3(a) shows that
process 0 waits for a matching send operation of process 1, which uses the tag 200,
while Figure 3(b) shows that a send operation exits, but with tag 100. If a mismatch
exists, the user needs to be able to identify the call and control flow origin of the
mismatched operation. We use a parallel call stack to represent all MPI operations
that started any operation within MUST’s relevant message queue graph. This iden-
tifies the call stacks of these operations, but as each operation may use multiple
targets, tags, and communicators, we need to highlight which individual parts of the
message queue graph result from each leaf of the call stack graph. As a result, we
decompose the message queue graph into sub-graphs that represent the components
that each MPI operation creates. Figure 3(d) shows this call-graph-based decompo-
sition for our example. This graph allows the tool user to determine which message
might be mismatched, while it contains information about its source location along
with limited control flow information.

1.5 Type Tree View

In this Section we will describe a new, more expressive graphical view for datatype
related errors.

The code example in Listing 1.1 sketches a particle simulation where information
about a subset of the particles needs to be transferred to a neighbor process. In the
application a C struct holds the information about a particle. The set of particles is
organized in an array of this struct. Using derived datatypes, MPI enables us to select
the subset from the array and send it in a single contiguous operation to the neigh-
bor. To create the fitting datatype, the example uses at first the MPI Type struct
constructor to represent the C struct and then an MPI Type indexed construc-
tor to select parts of an array of this struct. While the first constructor is cor-
rect with respect to type matching, the second one causes a communication buffer
overlap when the example issues the MPI Sendrecv call (performed as local

10 J. Protze et al.

Listing 1.1 Example for a communication buffer overlap

double velocity[3]; double spin[3]; char charge;
double radius; double mass; };

struct particle cloud[112];
MPI_Datatype structtype, indexedtype;

int blocklens[7] = {3, 3, 3, 3, 1, 1, 1};
MPI_Datatype types[7] = {MPI_DOUBLE, MPI_INT, MPI_DOUBLE,

MPI_DOUBLE, MPI_CHAR, MPI_DOUBLE, MPI_DOUBLE};
// displs derived from c-struct by MPI_Get_address()
MPI_Aint displs[7] = {0, 24, 40, 64, 88, 96, 104, 112};
MPI_Type_struct (7, blocklens, displs, types,

&structtype);

int array_of_blocklens[8] = {3, 2, 1, 2, 4, 8, 1, 3};
int array_of_displs[8] = {3, 13, 23, 34, 44, 55, 65, 76};
MPI_Type_indexed (8, array_of_blocklens, array_of_displs,

structtype, &indexedtype);
MPI_Type_commit(&indexedtype);

MPI_Sendrecv(cloud, 1, indexedtype, 0, 42, cloud + 25, 1,
indexedtype, 0, 42, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

operation in this simplified example). MUST’s current path expressions calculate
to [0](INDEXED)[5][4](STRUCT)[0][0](DOUBLE) for the sending part
and [0](INDEXED)[3][0](STRUCT)[0][0](DOUBLE) for the receiving
part of the MPI Sendrecv call. Figure 4(a) sketches the overlap within the array
(called cloud) of the C structure, i.e., the elements that the MPI Type indexed
constructor selects from the array. While this representation highlights the overlap,
this display loses information about the internal datatype structure. To combine the
expressiveness of the path expression and the overview of such a memory map, we
propose an overlap graph. This graph visualizes the two path expressions that cause
the overlap along with a sketched structure of the datatypes in use. Figure 4(b) shows
this graph for the example in Listing 1.1. We represent the path expressions of the
overlap in red in this graph. For overlaps the trees of the colliding communication
operations will either join at a node of the same basic MPI type and absolute offset,
as in our example, or we use a compound node if the overlap occurs for two differ-
ent types/offsets. We join further tree nodes if they compare to equal sub-types, as
for the MPI Type struct in our example. We compute this by recursing the type
trees from the leaf towards its root.

An example for a type mismatch can be derived from the above example by mix-
ing up the struct entries for charge and radius at one of the neighbor processes.
The current path expression for this situation calculates to [0](INDEXED)[0][0]
(STRUCT)[4][0](CHAR) and [0](INDEXED)[0][0](STRUCT)[4][0]

1 MPI Runtime Error Detection with MUST: Advanced Error Reports 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) Array indices of send / receive marked blue / green.

MPI_Sendrecv@1:send MPI_Sendrecv@1:recv

MPI_Type_indexed

[0]

MPI_Type_indexed

[0]

8

[5]

2

[3]

MPI_Type_struct

[4] [0]

3

[0]

MPI_DOUBLE

[0]

(b) Overlap graph.

Fig. 1.4 Overlap view for the example in Listing 1.1.

(DOUBLE), indicating that an MPI CHAR mismatches with an MPI DOUBLE. To
display the mismatch we create a tree for both involved datatypes where we skip
nodes apart from the (red) error path while we keep a few basic MPI types near
the mismatch position to have a more detailed context of the mismatch. To derive a
smaller graph we merge similar nodes of both trees. Figure 1.5 provides the resulting
view for the sketched mismatch situation.

12 J. Protze et al.

MPI_Sendrecv@0:send MPI_Sendrecv@1:recv

MPI_Type_indexed

[0]

3

[0]

MPI_Type_struct

[0]

3 1 1

[4] [4]

1 1 1

(DOUBLE) (DOUBLE) (DOUBLE) (DOUBLE) (CHAR)

[0] [0]

(CHAR) (DOUBLE) (DOUBLE)

Fig. 1.5 Type mismatch view for a confusion in the type definition.

1.6 Related Work

This work directly relates to other runtime error detection approaches for MPI ap-
plications, which include Marmot [2], Umpire [3], ISP [11], MPI-Check [12], and
Intel’s approach [13]. While MUST is the successor of both Marmot and Umpire,
the MPI-Check tool and Intel’s approach use a timeout-based deadlock detection.
As a result, these tools only provide a list of all active MPI calls when the presence
of a deadlock is suspected. ISP runs a replay based investigation of all possible inter-
leavings of an MPI application. As a result, this tool can detect some deadlocks that
MUST would not detect in a certain application run. ISP’s deadlock output includes
a trace of all MPI calls that each process issued, as well as their matching decisions.
While very detailed, this output will get overly complex, especially for longer appli-
cation runs with more than a few processes. While our output contains no complete
history of all issued MPI calls, we provide the user with a more scalable deadlock
view that condenses relevant history information with the use of a reduced message
queue graph.

The STAT [10] tool and debuggers like DDT and Totalview use parallel call
stack graphs and/or message queue graphs. Debuggers use interfaces to the MPI
library [14] to retrieve message queue information, whereas MUST tracks all MPI
calls during the whole application run. Existing integrations of runtime error detec-
tion tools with debuggers, e.g. DDT and Marmot [15], could be extended to provide
debuggers with information on which processes cause a deadlock. Debuggers could
than condense message queue graphs as in our approach. Also, the representation

1 MPI Runtime Error Detection with MUST: Advanced Error Reports 13

of derived datatypes with trees is based on ideas of the flattening on the fly tech-
nique [16].

1.7 Conclusions

We present the MUST runtime error detection tool for MPI applications along with
extensions of its error reports. Our previous output for deadlock situations failed to
capture information on active point-to-point messages, which is crucial in the de-
tection of message mismatch situations. We use message queue graphs to present
these active operations. MUST’s graph-based deadlock detection yields a set of pro-
cesses that cause the deadlock, which allows us to condense parallel call stacks and
message queues to only include relevant information. In order to add call location
information to the message queue graph representation, we propose an extended
parallel call stack graph that includes a decomposition of the message queue graphs
in their leaves. While these representations allow us to present relevant information
for the removal of deadlocks at moderate scale, we still need to investigate their
practicability for thousands or more processes. While our approach allows us to
visualize deadlocks that only involve a few processes, it may fail for complex dead-
locks that involve all or most application processes. This especially affects the size
of the WFG and the message queue graphs.

Our second error view provides a detailed output for errors that involve derived
datatypes. This includes communication buffer overlaps, and type mismatches be-
tween point-to-point or collective MPI operations. The removal of these errors re-
quires a precise understanding of which part in a derived datatype causes the error.
As a result, we use a narrowed type tree representation that highlights the position
in the datatype that causes the error, while it sketches the structure of the involved
datatypes at the same time.

Acknowledgements Part of this work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
(LLNL-CONF-??????). This work has been supported by the CRESTA project that has received
funding from the European Community’s Seventh Framework Programme (ICT-2011.9.13) under
Grant Agreement no. 287703.

References

1. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard, Version 2.2.
http://www.mpi-forum.org/docs/mpi22-report.pdf (April 2009)

2. Krammer, B., Müller, M.S.: MPI Application Development with MARMOT. In: PARCO.
Volume 33., Central Institute for Applied Mathematics, Jülich, Germany (2005) 893–900

3. Vetter, J.S., de Supinski, B.R.: Dynamic Software Testing of MPI Applications with Umpire.
Supercomputing, ACM/IEEE 2000 Conference (04-10 Nov. 2000) 51–51

14 J. Protze et al.

4. Hilbrich, T., Protze, J., Schulz, M., de Supinski, B.R., Müller, M.S.: Mpi runtime error de-
tection with must: Advances in deadlock detection. In: Proceedings of 2012 International
Conference for High Performance Computing, Networking, Storage and Analysis. SC ’12,
New York, NY, USA, ACM (2012)

5. Protze, J., Hilbrich, T., Knüpfer, A., de Supinski, B.R., Müller, M.S.: Holistic Debugging of
MPI Derived Datatypes. In: IPDPS 2012: Proceedings of the 26th IEEE International Parallel
& Distributed Processing Symposium. (2012)

6. Hilbrich, T., Müller, M.S., de Supinski, B.R., Schulz, M., Nagel, W.E.: GTI: A Generic Tools
Infrastructure for Event Based Tools in Parallel Systems. In: IPDPS 2012: Proceedings of the
26th IEEE International Parallel & Distributed Processing Symposium. (2012)

7. Krammer, B., Hilbrich, T., Himmler, V., Czink, B., Dichev, K., Müller, M.S.: MPI Correctness
Checking with Marmot. In: Parallel Tools Workshop’08. (2008) 61–78

8. Hilbrich, T., de Supinski, B.R., Schulz, M., Müller, M.S.: A Graph Based Approach for
MPI Deadlock Detection. In: ICS ’09: Proceedings of the 23rd International Conference on
Supercomputing, New York, NY, USA, ACM (2009) 296–305

9. Ahn, D.H., de Supinski, B.R., Laguna, I., Lee, G.L., Liblit, B., Miller, B.P., Schulz, M.: Scal-
able temporal order analysis for large scale debugging. In: Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis. SC ’09, New York, NY,
USA, ACM (2009) 44:1–44:11

10. Arnold, D., Ahn, D., de Supinski, B., Lee, G., Miller, B., Schulz, M.: Stack Trace Analysis
for Large Scale Debugging. In: Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International. (march 2007) 1 –10

11. Vakkalanka, S.S., Sharma, S., Gopalakrishnan, G., Kirby, R.M.: ISP: A Tool for Model Check-
ing MPI Programs. In: 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. (2008) 285–286

12. Luecke, G.R., Chen, H., Coyle, J., Hoekstra, J., Kraeva, M., Zou, Y.: MPI-CHECK: A Tool for
Checking Fortran 90 MPI Programs. Concurrency and Computation: Practice and Experience
15(2) (2003) 93–100

13. Desouza, J., Kuhn, B., Supinski, B.R.D.: Automated, Scalable Debugging of MPI Programs
with Intel Message Checker. In: In Workshop on Software Engineering for High Performance
Computing System Applications (SE-HPCS. (2005)

14. Cownie, J.: A standard interface for debugger access to message queue information in MPI.
In: Recent Advances in Parallel Virtual Machine and Message Passing Interface, volume 1697
of Lecture Notes in Computer Science, Springer Verlag (1999) 51–58

15. Krammer, B., Himmler, V., Lecomber, D.: Coupling DDT and Marmot for debugging of MPI
applications. In: PARCO’07. (2007) 653–660

16. Träff, J.L., Hempel, R., Ritzdorf, H., Zimmermann, F.: Flattening on the Fly: Efficient Han-
dling of MPI Derived Datatypes. In: Proceedings of the 6th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface, Lon-
don, UK, Springer-Verlag (1999) 109–116

